Журнал ТЗ № 5 2007 | Новая технология построения систем защиты от пожара на базе роботизированных комплексов пожаротушения
  бюро находок  
  Где искать        
наши издания
наши анонсы






2007
№ 5
статьи



Журнал ТЗ № 5 2007



Раздел:
Тема: Системы пожаротушения
Автор: Сергей Амельчугов, начальник филиала, д.т.н.; Роман Горностаев, начальник отдела Сибирский филиал ФГУ ВНИИПО МЧС России; Сергей Лёвин, главный конструктор НПФ "Сигма - Интегрированные системы"

Новая технология построения систем защиты от пожара на базе роботизированных комплексов пожаротушения

Современное развитие науки и техники по-зволяет говорить о следующем шаге в пожаротушении . Это внедрение робототехнических средств, где интеллектуаль-ные способности человека соединяются с техническими возможностями средств автоматизации. В настоящее время в России все большее применение для защиты от пожаров современных зданий и сооружений находят стационарные пожарные робототехнические комплексы. В роботизиро-ванных системах пожаротушения определенную роль игра-ет возможность избирательности, то есть для различных параметров пожара подбирается наиболее оптимальная систе-ма защиты объекта. При этом наиболее важным становится минимизация подачи огнетушащих средств при безуслов-ной ликвидации пожара. Все это обусловило совершенство-вание пожарных роботов (ПР) по трем направлениям.


Рис.1 График дальности сплошной струи при рабочем давлении на насадке

Направление первое. Вначале по-жарные роботы создавались на базе лафетных пожарных стволов. Тактические возможности современных лафетных пожарных стволов ограничиваются дальностью создавае-мой ими струи. Для лафетных стволов с расходом более 20 л/с дальность подачи воды для различных конструкций со-ставляет от 43 до 55 м. Увеличение дальности струи тради-ционно достигается увеличением производительности ство-ла, что, в свою очередь, значительно повышает требования к подводящим сетям водоснабжения. В результате сущест-венно усложняется конструкция комплексов пожаротуше-ния и возрастает стоимость таких систем. Поэтому сравни-тельно небольшая дальность сплошной струи применяемых лафетных стволов снизила конкурентные преимущества ПР перед традиционными системами автоматического водяного пожаротушения.

Решить эту проблему помогло создание специального на-садка, который позволяет формировать максимально длин-ную сплошную струю. Конструкция насадка обеспечивает безударный вход потока в насадок, равномерный прирост скорости вдоль профиля насадка, усреднение скорости по сечению потока. Простота конструкции насадка позволяет создавать ПР с широким диапазоном расходных характери-стик, что обеспечивает использование ПР для тушения по-жаров всех групп помещений по НПБ 88-2001*, охлаждения строительных конструкций и оборудования различных зданий и сооружений. На рис. 1 показана даль-ность сплошной струи в зависимости от расхода воды.


Рис.2 График дальности сплошной струи расходом 15 л/с

При внедрении робототехнических ком-плексов пожаротушения с использованием лафетных по-жарных стволов практики столкнулись с необходимостью регулирования расхода воды в зависимости от давления на подводящем трубопроводе, так как длина и траектория струи существенно зависит от давления на насадке. Новый насадок позволяет сохранить дальность струи после выхода на рабочее давление (см. рис. 2), тем самым отпадает необ-ходимость в управлении Q-H характеристиками на стволе, в результате повышается надежность работы системы в це-лом.

Таким образом, для робототехнических комплексов пожа-ротушения вместо лафетных пожарных стволов целесооб-разно применять специально разработанные для ПР-насадки.


Рис. 3. Система обнаружения координаты пожара.

Второе направление. Пожар – это сложный физико-химический процесс, обнаружение кото-рого обусловлено стадией, размерами пожара, назначением защищаемого помещения и видом пожарной нагрузки, а так как отличительной особенностью ПР является возможность подачи большого количества огнетушащего вещества в за-данное пространство, то роботизированные комплексы по-жаротушения предъявляют дополнительные требования к подсистеме обнаружения пожара: высокая достоверность обнаружения пожаров, малая инерционность, точное опре-деление местоположения очага горения. Используемые для целей обеспечения пожарной безопасности объектов по-жарные извещатели не в полной мере удовлетворяют этим требованиям.

Поиск привел к созданию принципа контроля теплового по-ля в ИК-диапазоне, который показал исключительную кон-курентную способность по сравнению с другими способами обнаружения пожара. Способ получил название «Метод оп-тической решетки» и состоит в следующем: датчики разде-ляются на два множества – датчики, отвечающие за оси Х и У. Для каждого датчика задается его координата (как пра-вило, 0,Х или 0,У). В случае если датчики (вне зависимости от принадлежности оси) определили состояние зоны «опти-ческой решетки» как «пожар», то проводится аппроксима-ция показаний датчиков по каждому из измерений полино-мом степени количества датчиков в измерении. В каждом измерении находят координату глобального максимума (0,Хмах или 0,Умах) – эти координаты определяют точку на плоскости P. Для обеспечения необходимой точности дан-ная процедура выполняется до тех пор, пока k-раз подряд разность между Pi не будет превышать R (доверительный интервал) в этот момент находится Pср. Далее определяется угол поворота/наклона для исполнительных устройств (че-рез разность координат Pср и Исп. Устр. по принципу пря-моугольного треугольника). К полученным углам поворота и подъема добавляются (вычитается) D поворота и D накло-на, получаются предельные углы поворота и наклона, кото-рые передаются в контроллер управления стволом.

Подсистема обнаружения пожара построена на основе ад-ресно-аналоговых датчиков теплового потока, расположен-ных в защищаемом помещении. Установка датчиков вы-полняется таким образом, что все защищаемое помещение делится на зоны одинаковой формы. Каждая зона имеет свои координаты, которые заложены в алгоритм тушения для каждой роботизированной установки пожаротушения. Опрос управляющим контрольно-адресным модулем адрес-но-аналоговых датчиков теплового потока позволяет вести постоянный тепловой мониторинг защищаемого помеще-ния. Алгоритм обнаружения определяется техническими требованиями к разработке программного обеспечения. В рамках поставленной цели решаются следующие задачи: классификация показаний датчика, выбор оптимального расстояния расстановки датчиков, определение значения теплового поля.

Задача выбора оптимального расположения датчиков опре-деляется как классическая задача оптимизации для заданной минимальной интенсивности обнаруживаемого очага, при критерии минимального количества датчиков, с учетом ар-хитектурных особенностей объекта и решается индивиду-ально для каждого конкретного объекта на этапе проекти-рования системы.

Таким образом, данный способ обнаружения пожара позволяет:

  • избежать постоянного механического сканирования ПР, тем самым увеличив надежность системы, срок службы ПР;
  • сократить до долей секунды время обнаружения пожа-ра;
  • использовать ПР без подсистемы видеоконтроля;
  • контролировать состояние помещения во время пожа-ра;
  • значительно сократить стоимость подсистемы обнару-жения.


Рис. 4. Роботизированная установка пожаротушения.

Третье направление – управление роботизированным комплексом пожаротушения. С точки зрения аппаратной реализации система должна отвечать двум основным требованиям: с одной стороны, она должна обладать быстродействием, достаточным для решения воз-лагаемого на нее комплекса задач в режиме реального вре-мени, а с другой – должна отвечать типичным требованиям к системам пожаротушения, то есть быть надежной и про-стой в обслуживании.

К требованиям программного обеспечения ПР относятся: возможности его относительно быстрого изготовления и изменения, надежность и быстродействие, а также безот-казность и безопасность.

В состав системы входят пожарная сигнализация, система пожаротушения и охлаждения конструкций на основе робо-тизированных пожарных стволов. (см. рис.4)
Система должна включать следующие элементы:

  • АРМ оператора;
  • автоматическую установку пожарной сигнализации и определения координаты пожара;
  • систему роботизированных установок пожаротушения;
  • систему оповещения людей о пожаре;
  • систему видеонаблюдения (опционально).

Работа системы управления
Управление системой роботизированных установок пожа-ротушения осуществляется с помощью прибора приемно-контрольного охранно-пожарного и управления путем по-лучения необходимых параметров от системы раннего об-наружения и дальнейшего направления роботизированных стволов в очаг пожара и зоны охлаждения строительных конструкций. При переводе системы в ручной режим опера-тор имеет возможность дистанционно управлять роботизи-рованными стволами, контролируя их положение на экране монитора, а также дополнительно посредством системы ви-деонаблюдения.

Работа системы подачи во-ды
Каждая из роботизированных установок пожаротушения имеет свою уникальную адресацию, что позволяет гибко управлять подсистемой подачи воды. При возникновении аварийной ситуации (тления, перегрева) или непосредст-венно возникновения горения алгоритмом работы системы предусмотрен запуск не менее двух роботизированных ус-тановок пожаротушения и производится автоматическая ориентация их в направлении очага пожара. При этом осу-ществляется дистанционное открытие запорного вентиля на данном стволе. Обе роботизированные установки пожаро-тушения направляются в соответствии с принятым алго-ритмом подачи воды, и при отсутствии реакции диспетчера на предупреждение о пожаре запускается автоматическая подача воды, учитывающая периодическое изменение на-правления стволов.

При этом система позволяет:

  • избежать неэффективного расхода воды при тушении пожара;
  • обеспечить в месте возникновения пожара необходи-мую интенсивность подачи огнетушащего вещества;
  • увеличить надежность средств пожарной защиты в це-лом, что достигается обеспечением автономности и надеж-ности работы с нескольких направлений подачи воды в ус-ловиях пожара.


Внимание! Копирование материалов, размещенных на данном сайте допускается только со ссылкой на ресурс http://www.tzmagazine.ru

Рады сообщить нашим читателям, что теперь нашем сайте работает модуль обратной связи. Нам важна ваша оценка наших публикаций! Также вы можете задавать свои вопросы.Наши авторы обязательно ответят на них.
Ждем ваших оценок, вопросов и комментариев!

Комментарии:
Добавить комментарий или задать вопрос

Правила комментирования статей

Версия для печати

Средняя оценка этой статьи: 0  (голосов: 0)
Ваша оценка:

назад
|

Axis представляет сетевой радар для точного обнаружения вторжений в контролируемых зонах
Компания Axis дополняет свой обширный портфель продукции сетевыми радарами. Радарные датчики вторжения не реагируют на многие распространенные сигналы, которые приводят к ложным срабатываниям, и легко устанавливаются и интегрируются в существующие системы.



Новинка от компании IDIS: 5Мп IP-видеокамера DC-T3533HRX
Тенденции развития индустрии IP-видеонаблюдения демонстрируют погоню производителей за увеличением разрешающей способности видеокамер. При этом часто оказывается так, что озвучиваемые цифры в 4, 9, 12 и даже 20 мегапикселей оказываются несопоставимыми с физическими размерами сенсоров, используемых в этих камерах. Поэтому подобные разрешения реализуются лишь на уровне соответствующих цифр в настройках камеры и не приводят к какому-либо улучшению изображения.



IBM меняет представление о передаче и хранении видео. Впервые на All-over-IP 2017!
Сравните ваш взгляд на интеллектуальное видеонаблюдение с мнением руководителей корпорации IBM на 10-м форуме All-over-IP 2017.



Реклама
Подписка на новости
Имя
E-mail
Анти-спам код
Copyright © 2008 —2017 «Технологии защиты».